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A class of models, generalizing asymmetric exclusion process for many parallel interacting channels, is
proposed. We couple the models with boundary reservoirs, study boundary-driven phase transitions, and show
that usually taken hydrodynamic description fails. The adequate hydrodynamic limit is then derived. We
support our findings with Monte Carlo simulations of the original stochastic system.
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I. INTRODUCTION

Many interesting nonequilibrium physical phenomena
(shock wave dynamics, boundary-driven phase transitions,
etc.) can be observed already in simplest models such as
driven diffusing particle systems, recent review of which can
be found, e.g., in Refs.[1,2]. These systems have a unique
ability to feel the dynamics of the boundaries thanks to the
presence of a flux of particles which brings information from
boundaries to the bulk. In absence of a flux, indeed, bound-
aries would play marginal role, as in ordinary equilibrium
statistical mechanics, but in presence of a flux the boundaries
may dominate the bulk with the possibility to give rise to
boundary-driven phase transitions. These phenomena were
indeed observed in one-species driven diffusive models
[3–5] and in some models containing more than one species
of particles(many-species models) [6,7]. In a more general
context, the problem was addressed in Ref.[4], where it was
shown that the stationary state of systems with one species of
particles with open boundaries in nonequilibrium depends
only on the stationary flux. This implies that an extremum
principle for the stationary flux can be formulated[5] and the
properties of the stationary state can be obtained directly
from the hydrodynamic limit. In this approach the stochastic
model is mapped into a viscousless conservation law equa-
tion which is ill defined(the corresponding Cauchy problem
admits multiple solutions). Since the dynamics of stochastic
system(Markov process) is unique, the problem of regular-
ization, i.e., how to single out the physical solution from a
set of multiple solutions, arises. As is well known, this prob-
lem is resolved by adding a phenomenological small dissipa-
tive term (of order «) to the conservation law equation and
then taking the limit«→0. For this purpose, a linear viscous
term of the form« ]2u/]x2 is usually considered, although
nonlinear terms of the type«fsud ]2u/]x2, with fsud being an
arbitrary convex function, are also possible. For one-species
systems this regularization procedure is quite robust in the
sense that different choices of the viscosity term can be
shown to lead to the same physical solution. For many-
species models, however, this is not trivial. In this case the
hydrodynamic limit is described by a system of conservation

laws (one for each particle species) and the regularization is
usually achieved by adding a diagonal diffusion matrix of the
form « ]2ui /]x2, to the system. In spite of its simplicity, there
is no evidence that this approach works also for these more
complicated systems and the regularization problem of mul-
tispecies driven diffusive systems is still open.

The aim of the present paper is twofold. From one side,
we introduce a class of multispecies driven diffusive models
which generalize the single-chain asymmetric exclusion pro-
cess. These models possess nice properties such as product
measure stationary state and particle-hole symmetry. From a
physical point view, they describe the motion of particles in
multichannel cables with the particles in adjacent cables cre-
ating an effective barrier potential for the particles in a given
cable to flow. From the other side, we study the hydrody-
namic limit of these models by showing that the conven-
tional regularization of the conservation law equations leads
to wrong hydrodynamic results. General arguments which
support this failure will be provided. On the contrary, we
show that an alternative regularization, obtained directly
from the microscopic dynamics, leads to correct results. A
detailed comparison of the hydrodynamic predictions(both
with conventional and alternative regularization) with direct
Monte Carlo simulation of the original stochastic model con-
firms these results.

Although the mapping fromhydrodynamic equationsto
stochastic processesis not unique, it is likely that our alter-
native regularization may work also for other multispecies
driven diffusive models.

II. THE MODEL

To introduce the model, we considerM ù2 discrete
chains on which particles can hop preferentially in one di-
rection. The hopping between adjacent chains is forbidden
but particles can move from a sitek to an empty sitek+1 on
the same chain with rates that depend on the particle con-
figuration at adjacent sites of “neighboring”S chains (the
results will be qualitatively the same for other possibilities of
next-neighboring hopping). Notice that such a dynamics
does not satisfy detailed balance condition meaning that the
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system is far from thermodynamic equilibrium. The hopping
rates for different configurations can be expressed in terms of
a single parameterb measuring the strength of the interac-
tion between the chains. Let us denote withrn the hopping
rate from sitek to sitek+1 on the same chain, in presence of
a total numbern of particles in adjacent chain sites. We
restrict our search to the models having stationary product
measures. In this case, calculation shows that the ratesrn
have to satisfy the conditionrn−rn−1=const for anyn. More-
over, the ratesrn turn out to depend only onn and not on the
particular configurations then particles can assume. WithS
chain neighbors, any given pair of consecutive sitesk,k+1
can have fromn=0 up to n=2S particle neighbors. An ex-
ample of the hopping process with the corresponding rates is
shown in Fig. 1 for the caseS=2. In general, for a chain
havingS chain neighbors[8], the rates of hopping(normal-
ized to r0=1) can be parametrized as

rn = 1 +nsb − 1d/2S, n = 0,1, . . . ,2S. s1d

Notice that forb=1 the rates become independent ofn si.e.,
the interchain interaction becomes zerod and the system
splits intoM parallel uncoupled totally asymmetric exclusion
processesf2,9g. For b,1, the ratess1d monotonically de-
crease with number of particle neighborsn, i.e., the presence
of adjacent particles creates an effective barrier potential
which slows down the particle movement.

The driven diffusive models described by Eq.(1) possess
the following properties.

(i) Product-measure.One can easily check that the model
admits a stationary distribution in the class of product mea-
sures. This means that the stationary state of the model is
spatially uncorrelated, both in the longitudinal and in the
transverse direction. This property allows to obtain a simple
analytic expression for the stationary flux(see below).

(ii ) Particle-hole symmetry.It is easy to check that an
exchange of particles with holes plus the substitutionb
→1/b leaves the model invariant. Since parameterb must
be in the range 0øb,` [the rates in Eq.(1) are non-
negative], the present property allows to further restrictb to
the range 0øbø1 only. In the limit of the strongest inter-
actionb=0 the hopping of a particle in completely saturated
environment becomes impossible,r2S=0. Let us consider
some specific examples.

Case S=1. In this case there is one neighboring chain for
each given chain. This can happen if there are only two
chainssM =2d or if in the model withM consecutive chains,
the hopping along one chain depends only on the state of the
next chain. Due to the property(i), the stationary flux on a
given chain forS=1 can be computed straightforwardly as

jsr,sd = rs1 − rdf1 + sb − 1dsg, s2d

wherer ands are average densities of particles on a given
chain and on a chain neighboring to it, respectively. The case
M =2 was considered in Ref.f10g where the properties of
elementary excitations were studied.

Case S=2. In this case each pair of sites on two neigh-
boring chains have up to four particle neighbors(see Fig. 1).
This situation can be realized in such a geometry ofM con-
secutive chains with periodic boundary conditionsM +1;1
in the transverse direction, where each chainm has two chain
neighborsm±1. The hopping rates are then obtained as

rn =5
1 if n = 0

sb + 3d/4 if n = 1

sb + 1d/2 if n = 2

s3b + 1d/4 if n = 3

b if n = 4.

s3d

The stationary flux on a chainm in a system with average
densityrk on the chaink can be obtained using propertysid,
as

jm = rms1 − rmdf1 + 1
2sb − 1dsrm+1 + rm−1dg . s4d

Case S.2. For arbitrary number ofS chain neighbors to
a given one, the stationary flux is given by

jm = rms1 − rmdS1 +
1

S
sb − 1d o

neighbors

rkD , s5d

where the sum is taken over the neighboring chains to a
chainm, andrk is an average particle density on chaink.

From a physical point of view the caseS.2 corresponds
to a coaxial cable with many fibers, on which particles move,
each fiber havingS fiber neighbors surrounding it. A real
system is always finite, so that boundary conditions where
particles can enter or exit the system must be imposed. To
model boundaries, we couple model(1) with stationary par-
ticle reservoirs of densitiesrL

m on the left boundary of chain
m, from where particles can be injected, and of the densities
rR

m, on the right boundary of it, where they can be extracted.
The rates of extraction and injection are obtained from the
boundary densities and for specific cases were given in Refs.
[7,11].

To proceed further, we fix the total number of chains,M,
the number of chain neighbors of a given chainS, the right
and left boundary densitiesrR

m,rL
m, and study bulk stationary

densities, that is, in the limit when time tends to infinity,t
→` [12], as the interchain interaction varies fromb=1
(noninteracting case) to b=0 (case of maximal interaction).

It is known that for an asymmetric exclusion process,
which is a limit of our models forb=1, there is a first-order
nonequilibrium phase transition atrR

m=1−rL
m.

1
2, where dis-

continuous transition from the low density phaserstat
m =rL

m for
rR

m=s1−rL
md−0 to a high density phaserstat

m =rR
m for rR

m=s1
−rL

md+0 happens. We will choose one of the boundary den-
sitiesrR

m,rL
m in the vicinity of this phase transition point(for

b=1), different for differentm to exclude possible degenera-

FIG. 1. Elementary hopping processes happening in the case of
M =3,S=2, with their rates. Four out of 16 possible configurations
are shown. The rates(1) depend only on the total number of par-
ticles in the neighboring four sites.
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cies, and look at the dependence ofrstat
m sbd for different

M ,S. Alternatively, we shall look at the dynamic properties
of the stochastic model and the hydrodynamic equation,
comparing the time evolution of an initial state after certain
time. The results of the Monte Carlo calculations can be seen
on the graphs, Figs. 2 and 3, alongside the results of numeri-
cal integration of corresponding partial differential equations
arising from stochastic model in hydrodynamic limit. Deri-
vation of these equations is given below.

III. HYDRODYNAMIC LIMIT

The naive continuum(Eulerian) limit of our stochastic
dynamics on the lattice is a system of conservation laws

] rZsx,td
] t

+
] jZ

] x
= e

]2rZ

] x2 , Z = 1,2, . . . ,M , s6d

with a phenomenological vanishing viscosity«→0 sregular-
ization termd on the right-hand side added. HererZsx,td de-
note coarse-grained particle densities whilejZ the particle
fluxes given by Eq.s5d. The regularization term in Eq.s6d
leads to the correct answer for the initial Riemann problem,
as compared to the stochastic modelssee Ref.f10gd but fails
to describe the reflection from the boundariesssee Ref.f13g,
Figs. 2 and 3d.

An adequate regularization is obtained by averaging exact
lattice continuity equations of the stochastic process

]

] t
n̂k = ĵ k−1 − ĵ k s7d

for occupation number operatorskn̂kl→rsx,td of any given
chain, making the lattice constant infinitesimally small,k,k
+1→x,x+a. For the cases1d, the local flux operatorĵ k be-
tween the sitesk andk+1 readsfsee Ref.f10g for a deriva-
tion of Eq. s8d in the caseM =2,S=1g:

ĵ k = n̂ks1 − n̂k+1dS1 +
b − 1

2S
o
p=1

S

sm̂k
p + m̂k+1

p dD . s8d

Here m̂k
p, p=1, . . . ,S are occupation number operators for a

sitek of the chains neighboring to a given one. We substitute
Eq. s8d into Eq. s7d, average, factorize, and Taylor expand
the latter with respect to the lattice constanta according to

kn̂k+1l = rsx,td + a
] r

] x
+

a2

2

]2r

] x2 + Osa3d,

etc. Expanding the resulting equation in powers ofa and
keeping terms up to the second order, we obtain the follow-
ing hydrodynamic equation:

] rZsx,td
] t

+
] jZ

] x
= e

]

] xF ] rZ

] x
S1 +

b − 1

S
o
p=1

S

rpDG ,

s9d
Z = 1,2, . . . ,M ,

whererp=rpsx,td are local densities of the chains neighbor-
ing to a given chainZ, «=a/2→0,] /]t→2«s] /]td. Notice
that Eq. (9) is valid for arbitraryM ,S and for M =2,S=1
coincides with the hydrodynamic equation derived in Ref.
[10].

To check the validity of this approach we have compared
direct numerical integrations of Eq.(9) with Monte Carlo
simulations of the original stochastic model described by the
rates in Eq.(1). As a result we obtain that, while the agree-
ment between the Monte Carlo predictions and the numerical
integration of Eq.(9) is excellent, the comparison with the
standard hydrodynamic limit gives rise to inconsistencies
(see discussion below) both in the stationary regime and dur-
ing relaxation towards stationarity. This is shown in Fig. 2
for system of two and in Fig. 3 for three chains withS=1.
From these figures it is clear that the choice of the viscosity
is indeed crucial to obtain correct results, since different

FIG. 2. Comparison of predictions of Monte Carlo(open
circles), the hydrodynamic equations, Eq.(9) (line) and Eq. (6)
(filled triangles), for stationary densities of particles in the system
as a function of interchain interactionb−1. Parameters areM
=2,S=1, the boundary densities of the chains arerL

1 ,rL
2=0.4,0.01

on the left, andrR
1 ,rR

2 =0.2,0.8 on the right end.

FIG. 3. The time evolution of the stochastic model(1) with b
=0, M =3. Comparison of average density profiles given by Monte
Carlo simulation(points), hydrodynamic equations(9) (lines), and
naive viscosity approach(6) (broken line). The system has evolved
for t=1600 Monte Carlo steps from homogeneous initial condition
knk

Zl=rL
Z, matching the left boundary densitiesrL

1=0.2,rL
2

=0.01,rL
3=0.1. The corresponding right boundary particle densities

are 0.8/0.9/0.1. An average over 105 histories is taken. One sees
that neither the position nor the level of the shock are predicted
correctly by the naive viscosity approach(the broken line).
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choices will produce different answers. We checked that Eq.
(9) gives results which coincide, up to nonuniversal bound-
ary layer and interface width, with Monte Carlo simulations
also for other values ofM ,S, and we believe this fact is valid
in general.

The above analysis can be easily generalized to the case
in which the hopping along the chains occurs in both direc-
tions. In this case the corresponding flux to the left is ob-
tained from the one to the right by exchangingrs1−rd in Eq.
(5) with the termsp−qdrs1−rd, wherep and q denote the
particle hopping rates on themth chain to the right and to the
left in the empty environment(the general conditions for a
product measure state can be found in Ref. 14).

It is interesting to discuss why a diagonal diffusion matrix
leads to inconsistent results for multispecies systems. To this
regard, we remark that one can formally obtain a diagonal
diffusion matrix in Taylor expansion of Eq.(7) by adding to
the flux (8) an additional term as, e.g.,

ĵ k = n̂ks1 − n̂k+1dS1 +
b − 1

2S
o
p=1

S

sm̂k
p + m̂k+1

p dD + Fb − 1

4S
sn̂k+1

− n̂kdo
p=1

S

sm̂k
p + m̂k+1

p dG . s10d

If one substitutes the above expression into Eq.s7d and per-
forms the same analysis as before, one obtains the resulting
equation in the forms6d. In this case, however, the factoriza-
tion becomes invalid because the flux operators10d describes
different process with correlations in the stationary state and
therefore with a stationary flux different from Eq.s5d. Thus,
by making the diffusion matrix diagonal one expects incon-
sistencies. This can be seen by considering a microscopic
state with all but one chain completely filled with particles,
the chain partially filled having an empty region separated by
a completely filled one,n̂k=0, kø0 and n̂k=1, k.0. Ac-
cording to the dynamic rules in Fig. 1, no movement is al-
lowed, while from Eq.s7d fwith averaged and factorized flux
as in Eq.s10dg, we obtain thats] /]tdn̂0Þ0. Notice that al-
though the choice of the second term in Eq.s10d is not
unique, the above arguments for inconsistency would still be
valid in presence of alternative choices. These inconsisten-

cies are clearly seen in Fig. 2, where a comparison between
stationary densities of the two-chain systemsM =2d obtained
from Monte Carlo calculations and hydrodynamic equations
s6d ands9d is made, as a function of the interchain interaction
1−b. The naive descriptions6d shows a phase transition at
b<0.1, while Monte Carlo and Eq.s9d show no effect.
The occurrence of a phase transition to high densities can
be understood as follows. Since the right boundary density
of particles of chain 2 is highfsr2dR=0.8g, it becomes
more and more difficult for the particles of chain 1 to exit
the chain with increasing interaction, so that “traffic jam”
occurs at the exit, thus leading to the phase transition.
This effect is greatly overestimated by the naive hydrody-
namic descriptions6d fin physical system the transition
happens for higher left boundary densitysr1dL*0.48g.

IV. CONCLUSION

In conclusion, we have introduced a class of models
which generalize the asymmetric simple exclusion process
for an arbitrary number of chains and with hopping rates
given as a function of the local configuration in the neigh-
boring chains(1) describing the effective friction a particle
encounters moving in a dense environment. For these models
we derived the stationary flux, and modified the conventional
choice of the viscosity term in the hydrodynamic limit(see,
e.g., Ref.[15]) in order to get a good agreement with Monte
Carlo simulations of the original stochastic process. Al-
though the problem of the hydrodynamic limit has been dis-
cussed in the specific example of the introduced models, the
results are expected to be valid in general(the advantage of
using our model is only for computational convenience since
the product measure property allows to obtain the bulk flux,
boundary conditions, etc., in an easy and straightforward
manner).
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