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Hydrodynamic limit of multichain driven diffusive models
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A class of models, generalizing asymmetric exclusion process for many parallel interacting channels, is
proposed. We couple the models with boundary reservoirs, study boundary-driven phase transitions, and show
that usually taken hydrodynamic description fails. The adequate hydrodynamic limit is then derived. We
support our findings with Monte Carlo simulations of the original stochastic system.
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[. INTRODUCTION laws (one for each particle specjeand the regularization is
usually achieved by adding a diagonal diffusion matrix of the
Many interesting nonequilibrium physical phenomenaforme ¢?u'/dx?, to the system. In spite of its simplicity, there
(shock wave dynamics, boundary-driven phase transitiongs no evidence that this approach works also for these more
etc) can be observed already in simplest models such asomplicated systems and the regularization problem of mul-
driven diffusing particle systems, recent review of which cantispecies driven diffusive systems is still open.
be found, e.g., in Refd1,2]. These systems have a unique The aim of the present paper is twofold. From one side,
ability to feel the dynamics of the boundaries thanks to thewe introduce a class of multispecies driven diffusive models
presence of a flux of particles which brings information fromwhich generalize the single-chain asymmetric exclusion pro-
boundaries to the bulk. In absence of a flux, indeed, boundsess. These models possess nice properties such as product
aries would play marginal role, as in ordinary equilibrium measure stationary state and particle-hole symmetry. From a
statistical mechanics, but in presence of a flux the boundarigshysical point view, they describe the motion of particles in
may dominate the bulk with the possibility to give rise to multichannel cables with the particles in adjacent cables cre-
boundary-driven phase transitions. These phenomena wegding an effective barrier potential for the particles in a given
indeed observed in one-species driven diffusive modelsable to flow. From the other side, we study the hydrody-
[3-5 and in some models containing more than one speciesamic limit of these models by showing that the conven-
of particles(many-species model$6,7]. In a more general tional regularization of the conservation law equations leads
context, the problem was addressed in Réf. where it was to wrong hydrodynamic results. General arguments which
shown that the stationary state of systems with one species sfipport this failure will be provided. On the contrary, we
particles with open boundaries in nonequilibrium dependshow that an alternative regularization, obtained directly
only on the stationary flux. This implies that an extremumfrom the microscopic dynamics, leads to correct results. A
principle for the stationary flux can be formulatig] and the  detailed comparison of the hydrodynamic predictigbsth
properties of the stationary state can be obtained directlyith conventional and alternative regularizatiomith direct
from the hydrodynamic limit. In this approach the stochasticMonte Carlo simulation of the original stochastic model con-
model is mapped into a viscousless conservation law equdirms these results.
tion which is ill defined(the corresponding Cauchy problem  Although the mapping fronhydrodynamic equationt
admits multiple solutions Since the dynamics of stochastic stochastic processés not unique, it is likely that our alter-
system(Markov procesgis unique, the problem of regular- native regularization may work also for other multispecies
ization, i.e., how to single out the physical solution from adriven diffusive models.
set of multiple solutions, arises. As is well known, this prob-
lem is resolved by adding a phenomenological small dissipa-
tive term (of order¢) to the conservation law equation and
then taking the limit — 0. For this purpose, a linear viscous  To introduce the model, we considév =2 discrete
term of the forme d°u/dx? is usually considered, although chains on which particles can hop preferentially in one di-
nonlinear terms of the typef(u) ¢°u/ ax?, with f(u) being an  rection. The hopping between adjacent chains is forbidden
arbitrary convex function, are also possible. For one-specielsut particles can move from a siketo an empty sité+1 on
systems this regularization procedure is quite robust in théhe same chain with rates that depend on the particle con-
sense that different choices of the viscosity term can bdiguration at adjacent sites of “neighboring’ chains (the
shown to lead to the same physical solution. For many+esults will be qualitatively the same for other possibilities of
species models, however, this is not trivial. In this case theext-neighboring hopping Notice that such a dynamics
hydrodynamic limit is described by a system of conservatiordoes not satisfy detailed balance condition meaning that the

Il. THE MODEL
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L . - . i(p,0)=p(1=p)[1+(B-1Do], (2
B (1+p)2 (1+p)2 wherep and o are average densities of particles on a given
-+ — — *—0 chain and on a chain neighboring to it, respectively. The case

I\{I=2 was considered in Ref10] where the properties of
%Iementary excitations were studied.

Case $2. In this case each pair of sites on two neigh-
boring chains have up to four particle neighb@se Fig. 1
This situation can be realized in such a geometryvlo€on-

, i I . _secutive chains with periodic boundary conditidfis- 1=1
system is far from thermodynamic equilibrium. The hoppingjn, the transverse direction, where each chainas two chain

rates for different configurations can be expressed in terms Cﬁeighborsmil. The hopping rates are then obtained as
a single paramete measuring the strength of the interac-

FIG. 1. Elementary hopping processes happening in the case
M=3,S=2, with their rates. Four out of 16 possible configurations
are shown. The rated) depend only on the total number of par-
ticles in the neighboring four sites.

-
tion between the chains. Let us denote withthe hopping 1 if N=0
rate from sitek to sitek+1 on the same chain, in presence of I
i : . L (B+3)/4 ifn=1
a total numbem of particles in adjacent chain sites. We _
restrict our search to the models having stationary product =y (B+D/2 ifn=2 3
measures. In this case, calculation shows that the rgtes BB+1/4 ifn=3
have to satisfy the condition,—r,_,=const for anyn. More- Lﬂ ifn=4.

over, the rates,, turn out to depend only on and not on the
particular configurations the particles can assume. With  The stationary flux on a chaim in a system with average
chain neighbors, any given pair of consecutive skgst1  densityp, on the chairk can be obtained using propeiy,
can have froom=0 up ton=2S particle neighbors. An ex- as

ample of the hopping process with the corresponding rates is

shown in Fig. 1 for the cas&=2. In general, for a chain im= (L = pr)[ 1+ 3(B= D (pmes + pm-1) |- (4)
having S chain neighbor$8], the rates of hoppingnormal-

ized tory=1) can be parametrized as Case S>2. For arbitrary number of chain neighbors to

a given one, the stationary flux is given by

r,.=1+n(8-1/2s, n=0,1,...,8 (1) 1
= - + — -
Notice that for8=1 the rates become independenndi.e., Jm= P2 pm)(l S('B 1)neigzhborspk>' ®
the interchain interaction becomes zerand the system ) . ] )
splits intoM parallel uncoupled totally asymmetric exclusion Where the sum is taken over the neighboring chains to a
processe$2,9]. For <1, the rateg1) monotonically de- chainm, andp, is an average particle density on chéin
crease with number of particle neighbarsi.e., the presence ~ From a physical point of view the case>2 corresponds

of adjacent particles creates an effective barrier potentid© & coaxial cable with many fibers, on which particles move,

which slows down the particle movement. each fiber havingS fiber neighbors surrounding it. A real
The driven diffusive models described by Efj) possess System is always finite, so that boundary conditions where
the following properties. particles can enter or exit the system must be imposed. To

(i) Product-measureOne can easily check that the model Mmodel boundaries, we couple modg) with stationary par-
admits a stationary distribution in the class of product meaficle reservoirs of densities" on the left boundary of chain
sures. This means that the stationary state of the model R, from where particles can be injected, and of the densities
spatially uncorrelated, both in the longitudinal and in thepr, On the right boundary of it, where they can be extracted.
transverse direction. This property allows to obtain a simplelhe rates of extraction and injection are obtained from the

analytic expression for the stationary flsee below: boundary densities and for specific cases were given in Refs.
(i) Particle-hole symmetnyit is easy to check that an [7,11. . _
exchange of particles with holes plus the substitutjen To proceed further, we fix the total number of chail,

—1/B leaves the model invariant. Since paramggemust  the number of chain neighbors of a given cha&jrthe right
be in the range &B8<wx [the rates in Eq(l) are non- and left boundary densitigsy, p", and study bulk stationary
negativ@, the present property allows to further restyitto densities, that is, in the limit when time tends to infinity,
the range & B<1 only. In the limit of the strongest inter- — [12], as the interchain interaction varies fropr1
action 8=0 the hopping of a particle in completely saturated(noninteracting cageo S=0 (case of maximal interaction
environment becomes impossible,s=0. Let us consider It is known that for an asymmetric exclusion process,
some specific examples. which is a limit of our models foB=1, there is a first-order
Case 1. In this case there is one neighboring chain fornonequilibrium phase transition a=1-p{">, where dis-
each given chain. This can happen if there are only twesontinuous transition from the low density phagk,=p{" for
chains(M=2) or if in the model withM consecutive chains, pr=(1-p)-0 to a high density phasel,=pR for pg=(1
the hopping along one chain depends only on the state of thep")+0 happens. We will choose one of the boundary den-
next chain. Due to the property), the stationary flux on a sitiespg,p[" in the vicinity of this phase transition poiffior
given chain forS=1 can be computed straightforwardly as B=1), different for differentm to exclude possible degenera-
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0.8 ' ' ' ' IR, Ip*xY) i Fpf

—e——, Z=1,2,...M, 6
at Ix " ax M ®

I with a phenomenological vanishing viscosity- 0 (regular-
o ization term) on the right-hand side added. Hgé(x,t) de-
v Lo oo 0 6o ews—o note coarse-grained particle densities whifethe particle
8 fluxes given by Eq(5). The regularization term in Ed6)
& leads to the correct answer for the initial Riemann problem,
as compared to the stochastic motsee Ref[10]) but fails
to describe the reflection from the boundarisse Ref[13],

Figs. 2 and R
An adequate regularization is obtained by averaging exact
1-B lattice continuity equations of the stochastic process
FIG. 2. Comparison of predictions of Monte Carlopen d .. = 2
circles, the hydrodynamic equations, E¢) (line) and Eq.(6) Enk—lk—l_lk (7)

(filled triangley, for stationary densities of particles in the system
as a function of interchain interactiof—1. Parameters aril for occupation number operatof8,) — p(x,t) of any given
=2,S=1, the boundary densities of the chains afep?=0.4,0.01  chain, making the lattice constant infinitesimally smallk

on the left, ancp, p=0.2,0.8 on the right end. +1—x,x+a. For the casél), the local flux operatof, be-
tween the sitek andk+1 readqsee Ref[10] for a deriva-

cies, and look at the dependence i}, (B) for different tion of Eq.(8) in the caseM=2,S=1]:

M,S. Alternatively, we shall look at the dynamic properties 51 s

of the stochastic model and the hydrodynamic equation, 2 . N - D A

comparing the time evolution of an initial state after certain =1 _nk+1)<l s gl(mﬁ+ m,8+1)>. (8)

time. The results of the Monte Carlo calculations can be seen

on the graphs, Figs. 2 and 3, alongside the results of numerHere A, p=1,...,S are occupation number operators for a

cal integration of corresponding partial differential equationssitek of the chains neighboring to a given one. We substitute

arising from stochastic model in hydrodynamic limit. Deri- Eq. (8) into Eq. (7), average, factorize, and Taylor expand

vation of these equations is given below. the latter with respect to the lattice constardccording to
. dap a’ o'?Zp
Ill. HYDRODYNAMIC LIMIT (Mep) = p(xf) +a- + 55+ o(a%),

The naive continuunm(Euleriar limit of our stochastic

. S X etc. Expanding the resulting equation in powersacand
dynamics on the lattice is a system of conservation laws

keeping terms up to the second order, we obtain the follow-
ing hydrodynamic equation:

1 T T
o =Ry apPxy) 9% a | ap(. B-1a
A I N —— | —|1+— P,
0.8 Ry at ax  ox| ax S pglp
% :
A 0.6} 9
o . Z=1,2,... M,
N, L/
N 0.4 wherepP=pP(x,t) are local densities of the chains neighbor-
o™ ; ing to a given chairZ, e=a/2—0,d/ t— 2(d/ it). Notice
g I x—-———-" that Eqg.(9) is valid for arbitraryM,S and forM=2,S=1
i3 ~Rs coincides with the hydrodynamic equation derived in Ref.
2
0 100 200 300 110}

To check the validity of this approach we have compared
direct numerical integrations of E@9) with Monte Carlo

FIG. 3. The time evolution of the stochastic mod#) with 4 simula_ltions of the original stochasti_c model de_scribed by the
=0, M=3. Comparison of average density profiles given by Monteates in Eq(1). As a result we obtaln t_hat, while the agree-
Carlo simulation(points, hydrodynamic equation@®) (lines), and ment bgtween the qute Carlo predictions an_d the n.umerlcal
naive viscosity approact6) (broken ling. The system has evolved integration of Eq(9) is excellent, the comparison with the
for t=1600 Monte Carlo steps from homogeneous initial conditionStandard hydrodynamic limit gives rise to inconsistencies
(n&y=p?, matching the left boundary densitiepl=0.2 02 (see discussion belgvboth in the stationary regime and dur-
=0.01p2=0.1. The corresponding right boundary particle densitiesing relaxation towards stationarity. This is shown in Fig. 2
are 0.8/0.9/0.1. An average over®lfiistories is taken. One sees for system of two and in Fig. 3 for three chains wig 1.
that neither the position nor the level of the shock are predicted=rom these figures it is clear that the choice of the viscosity
correctly by the naive viscosity approaghe broken ling is indeed crucial to obtain correct results, since different

k (sites)
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choices will produce different answers. We checked that Eqcies are clearly seen in Fig. 2, where a comparison between

(9) gives results which coincide, up to nonuniversal bound-stationary densities of the two-chain systévh=2) obtained

ary layer and interface width, with Monte Carlo simulations from Monte Carlo calculations and hydrodynamic equations

also for other values d1, S, and we believe this fact is valid (6) and(9) is made, as a function of the interchain interaction

in general. 1-4. The naive descriptioi6) shows a phase transition at
The above analysis can be easily generalized to the cagg=0.1, while Monte Carlo and Eq(9) show no effect.

in which the hopping along the chains occurs in both direc-The occurrence of a phase transition to high densities can

tions. In this case the corresponding flux to the left is ob-be understood as follows. Since the right boundary density

tained from the one to the right by exchangig@ —p) in Eq.  of particles of chain 2 is higH(p,)g=0.8], it becomes

(5) with the term(p-q)p(1-p), wherep and q denote the more and more difficult for the particles of chain 1 to exit

particle hopping rates on thmath chain to the right and to the the chain with increasing interaction, so that “traffic jam”

left in the empty environmentthe general conditions for a occurs at the exit, thus leading to the phase transition.

product measure state can be found in Rej. 14 This effect is greatly overestimated by the naive hydrody-
It is interesting to discuss why a diagonal diffusion matrix namic description(6) [in physical system the transition

leads to inconsistent results for multispecies systems. To thisappens for higher left boundary densijy), =0.48].

regard, we remark that one can formally obtain a diagonal

diffusion matrix in Taylor expansion of Eq7) by adding to IV. CONCLUSION
the flux (8) an additional term as, e.g., In conclusion, we have introduced a class of models
s-1 s s-1 which generalize the asymmetric simple exclusion process
T ZA(1-h _ AP | AP PT L for an arbitrary number of chains and with hopping rates
Je= (L nk+1)<1 * 2s p%(mk+mk+1)> * ! 4s (ea given as a function of the local configuration in the neigh-
s boring chaing(1) describing the effective friction a particle
“h)S (AP + AP 10 encounters moving in a dense environment. For these models
nk)p: l(mk M) |- (10 we derived the stationary flux, and modified the conventional

choice of the viscosity term in the hydrodynamic lintsee,
If one substitutes the above expression into @j.and per- e.g., Ref[15]) in order to get a good agreement with Monte
forms the same analysis as before, one obtains the resultir@arlo simulations of the original stochastic process. Al-
equation in the fornt6). In this case, however, the factoriza- though the problem of the hydrodynamic limit has been dis-
tion becomes invalid because the flux operdid) describes cussed in the specific example of the introduced models, the
different process with correlations in the stationary state andesults are expected to be valid in gendthe advantage of
therefore with a stationary flux different from E). Thus,  using our model is only for computational convenience since
by making the diffusion matrix diagonal one expects incon-the product measure property allows to obtain the bulk flux,
sistencies. This can be seen by considering a microscopimoundary conditions, etc., in an easy and straightforward
state with all but one chain completely filled with particles, manney.
the chain patrtially filled having an empty region separated by
a completely filled onef,=0, k<0 andn,=1, k>0. Ac- ACKNOWLEDGMENTS
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